午夜剧场伦理_日本一道高清_国产又黄又硬_91黄色网战_女同久久另类69精品国产_妹妹的朋友在线

您的位置:首頁技術文章
文章詳情頁

解決Python Matplotlib繪圖數據點位置錯亂問題

瀏覽:22日期:2022-07-25 11:45:13

在繪制正負樣本在各個特征維度上的CDF(累積分布)圖時出現了以下問題:

解決Python Matplotlib繪圖數據點位置錯亂問題

問題具體表現為:

1.幾個負樣本的數據點位置倒錯

2.X軸刻度變成了亂七八糟一團鬼東西

最終解決辦法

造成上述情況的原因其實是由于輸入matplotlib.plot()函數的數據x_data和y_data從CSV文件中直接導入后格式為string,因此才會導致所有數據點的x坐標都被直接刻在了x軸上,且由于坐標數據格式錯誤,部分點也就表現為“亂點”。解決辦法就是導入x,y數據后先將其轉化為float型數據,然后輸入plot()函數,問題即解決。

解決Python Matplotlib繪圖數據點位置錯亂問題

補充知識:matplotlib如何在繪制時間序列時跳過無數據的區間

其實官方文檔里就提供了方法,這里簡單的翻譯并記錄一下.

11.1.9 Skip dates where there is no dataWhen plotting time series, e.g., financial time series, one often wants to leave out days on which there is no data, e.g., weekends.By passing in dates on the x-xaxis, you get large horizontal gaps on periods when there is not data.

The solution is to pass in some proxy x-data, e.g., evenly sampled indices, and then use a custom formatter to format these as dates.The example below shows how to use an ‘index formatter’ to achieve the desired plot:

解決方案是通過傳遞x軸數據的代理,比如下標,

然后通過自定義的’formatter’去取到相對應的時間信息

manual內示例代碼:

import numpy as npimport matplotlib.pyplot as pltimport matplotlib.mlab as mlabimport matplotlib.ticker as ticker#讀數據r = mlab.csv2rec(’../data/aapl.csv’)r.sort()r = r[-30:] # get the last 30 daysN = len(r)ind = np.arange(N) # the evenly spaced plot indicesdef format_date(x, pos=None): #保證下標不越界,很重要,越界會導致最終plot坐標軸label無顯示 thisind = np.clip(int(x+0.5), 0, N-1) return r.date[thisind].strftime(’%Y-%m-%d’)fig = plt.figure()ax = fig.add_subplot(1,1,1)ax.plot(ind, r.adj_close, ’o-’)ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))fig.autofmt_xdate()plt.show()

示例:

同樣一段數據上為原始,下為去掉無數據間隔區間

解決Python Matplotlib繪圖數據點位置錯亂問題

import pandas as PDimport numpy as NPimport matplotlib.pyplot as PLTimport matplotlib.ticker as MTKfile = r’vix_series.csv’df = PD.read_csv(file, parse_dates=[0, 2])#用下標代理原始時間戳數據idx_pxy = NP.arange(df.shape[0])#下標-時間轉換funcdef x_fmt_func(x, pos=None): idx = NP.clip(int(x+0.5), 0, df.shape[0]-1) return df[’datetime’].iat[idx]#繪圖流程def decorateAx(ax, xs, ys, x_func): ax.plot(xs, ys, color='green', linewidth=1, linestyle='-') ax.plot(ax.get_xlim(), [0,0], color='blue', linewidth=0.5, linestyle='--') if x_func: #set數據代理func ax.xaxis.set_major_formatter(MTK.FuncFormatter(x_func)) ax.grid(True) returnfig = PLT.figure()ax1 = fig.add_subplot(2,1,1)ax2 = fig.add_subplot(2,1,2)decorateAx(ax1, df[’datetime’], df[’vix_all’], None)decorateAx(ax2, idx_pxy, df[’vix_all’], x_fmt_func)#優化label顯示,非必須fig.autofmt_xdate()PLT.show()

很多時候亂翻google還不如好好通讀官方manual…

以上這篇解決Python Matplotlib繪圖數據點位置錯亂問題就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持好吧啦網。

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 黄页网站在线免费观看 | 四虎视频在线 | 日本黄色免费网站 | 日韩av成人在线 | 中文在线字幕免费观看 | 美腿丝袜av | 蜜桃久久久久 | 国产精品日 | 色多多在线观看视频 | 在线观看av中文字幕 | 亚洲欧美专区 | 色女av | 欧美日韩在线观看成人 | 色悠悠久久综合 | 日日操夜夜摸 | 成人免费视频国产在线观看 | 色婷婷亚洲| 一道本在线观看视频 | 欧美日韩视频免费观看 | 欧美性一级 | 欧美日韩高清一区二区三区 | 日韩av中文字幕在线播放 | 好吊色视频在线观看 | 日韩免费一级片 | 人人澡人人澡人人澡 | 国产在线不卡av | 国产精品高清在线观看 | 久久国产精品久久 | 欧美jizz欧美性大全 | 国产极品久久 | 欧美日韩在线视频免费播放 | 成人在线精品 | 亚洲福利视频在线 | 日本视频在线免费 | 亚色图 | 欧美中文字幕 | 成人免费视频观看 | 我要看一级黄色录像 | 国产又大 | 波多野结衣视频一区二区 | 亚洲精品456|